horizon. The sun, the winds, the waves all join in preventing our return to a flat-earth world, where we could watch the tides follow the moon without understanding.
All things are made of atoms —how much harder it is to reconcile this received fact with the daily experience of solid tables and chairs. Glancing at the smooth depressions worn in the stone steps of an office building, we seldom recognize the cumulative loss of invisibly small particles struck off by ten million footfalls. Nor do we connect the geometrical facets of a jewel to a mental picture of atoms stacked like cannonballs, favoring a particular crystalline orientation and so forcing regular angles visible to the naked eye. If we do think about the atoms in us and around us, the persistence of solid stone remains a mystery. Richard Feynman asked a high-school teacher (and never heard a satisfactory reply), “How do sharp things stay sharp all this time if the atoms are always jiggling?”
The adult Feynman asked: If all scientific knowledge were lost in a cataclysm, what single statement would preserve the most information for the next generations of creatures? How could we best pass on our understanding of the world? He proposed, “ All things are made of atoms — little particles that move around in perpetual motion, attracting each other when they are a little distance apart, but repelling upon being squeezed into one another ,” and he added, “In that one sentence, you will see, there is an enormous amount of information about the world, if just a little imagination and thinking are applied.” Although millennia had passed since natural philosophers broached the atomic idea, Feynman’s lifetime saw the first generations of scientists who truly and universally believed in it, not just as a mental convenience but as a hard physical reality. As late as 1922 Bohr, delivering his Nobel Prize address, felt compelled to remind his listeners that scientists “believe the existence of atoms to be proved beyond a doubt.” Richard nevertheless read and reread in the Feynmans’ Encyclopaedia Britannica that “pure chemistry, even to-day, has no very conclusive arguments for the settlement of this controversy.” Stronger evidence was at hand from the newer science, physics: the phenomenon called radioactivity seemed to involve the actual disintegration of matter, so discretely as to produce audible pings or visible blips. Not until the eighties could people say that they had finally seen atoms. Even then the seeing was indirect, but it stirred the imagination to see shadowy globules arrayed in electron-microscope photographs or to see glowing points of orange light in the laser crossfire of “atom traps.”
Not solids but gases began to persuade seventeenth- and eighteenth-century scientists of matter’s fundamental granularity. In the heady aftermath of Newton’s revolution scientists made measurements, found constant quantities, and forged mathematical relationships that a philosophy without numbers had left hidden. Investigators made and unmade water, ammonia, carbonic acid, potash, and dozens of other compounds. When they carefully weighed the ingredients and end products, they discovered regularities. Volumes of hydrogen and oxygen vanished in a neat two-to-one ratio in the making of water. Robert Boyle found in England that, although one could vary both the pressure and the volume of air trapped at a given temperature in a piston, one could not vary their product. Pressure multiplied by volume was a constant. These measures were joined by an invisible rod—why? Heating a gas increased its volume or its pressure. Why?
Heat had seemed to flow from one place to another as an invisible fluid—“phlogiston” or “caloric.” But a succession of natural philosophers hit on a less intuitive idea—that heat was motion. It was a brave thought, because no one could see the things in motion. A scientist had to imagine uncountable corpuscles
Mark Chadbourn
Scott Martelle
Rachel Shane
Vahini Naidoo
Perminder S. Sachdev
Jeff Kinney
Caitlin Ricci
Linda Chapman
Douglas Corleone
Kathleen Lash