Coming of Age: Volume 1: Eternal Life

Read Online Coming of Age: Volume 1: Eternal Life by Thomas T. Thomas - Free Book Online Page B

Book: Coming of Age: Volume 1: Eternal Life by Thomas T. Thomas Read Free Book Online
Authors: Thomas T. Thomas
Tags: Science-Fiction, Literature & Fiction, Science Fiction & Fantasy, High Tech, Hard Science Fiction
Ads: Link
the University of California - San Francisco’s Medical Center up at Mission Bay.
    In the old days, with dozens and sometimes hundreds of blood and tissue samples arriving at a lab like hers from around the country, mixing up patient identities would have been all too possible. Relying on just surname and first initial, or even the patient’s Social Security number, would have been a recipe for life-threatening disasters, because those tags existed outside of the tissue itself. You had to find some way to tell the anonymous tissues apart after they had passed through various containers in the various stages of processing.
    Each of these samples was now tagged with the thirteen genetic markers and sex differentiator of the Combined DNA Index System, or CODIS, which the FBI had originally created for forensic profiling. Before any culture was sent to Gonzales’s lab, it was profiled with a DNA test kit and the results were attached. Before she sent pluripotent tissue back to the implant center, she profiled and matched it to the donor’s CODIS identity. And the center that had shipped the sample in the first place performed another DNA test upon receipt, just to be sure.
    But after Gonzales had logged the samples into her computer and while they remained in her lab, they traveled in two-milliliter tubes, microtiter plates, and culture dishes marked with a Sharpie and using just the last name and initial. If anyone screwed up the plates along the way, they would simply toss that batch and start another. Tissue was cheap. The lab never consumed more than a fraction of the original cells extracted from the patient. And the chemicals and nutrients used in processing them were all bio-synthesized and stocked in liter-sized bottles. Nothing was ever lost, except time. Any mistakes that she and her co-workers might make never saw the light of day—although the Food and Drug Administration required them to log botched and restarted batches as a quality metric.
    The three samples from the Praxis patient were identified as muscle, vascular, and skin cells, with the notation that the latter were wanted to be made potent for a neural replacement. “I guess the heart project is finally taking off,” Gonzales murmured as she keyed the protocol requests into the appropriate boxes on her computer screen.
    The sample from patient Wells was from skin and also noted as a neural implant. “Somebody fell and hit their head,” she said, keying in the nerve-cell protocol for a second time.
    The other samples she processed without comment.
    In the early days, researchers working on cellular regeneration had thought to use stem cells from human embryos to build new organs in adults, because developing embryos were rich in cells that could potentially become many different cell types. Some were even “totipotent” and could become anything at all, provided you caught the embryo early enough, at the blastocyst or hollow-ball stage. But it turned out that taking stem cells from a baby was no better than drawing stem cells or a freshly harvested organ from another adult. The risk of incompatibility between the immune system antigens was just as great, and the patient still faced a lifelong regimen of immune-suppressing drugs. And then even research into embryonic stem cells had become clouded, because raising human embryos on a routine, assembly line basis made some people queasy—for, of course, the embryo did not survive the harvesting process. The only way to use a baby’s stem cells successfully was by freezing the patient’s own umbilicus at birth, saving the stem cells stored there against the day when they could be used to grow new organs.
    All that was ancient history now. That early research with embryos had revealed the little bits of ribonucleic acid, called “microRNAs,” that were used to differentiate and make new tissues from stem cells. Unlike the messenger RNA that got translated into proteins out in the cell body, these

Similar Books

Egypt

Patti Wheeler

Mira Corpora

Jeff Jackson

The Ransom Knight

Jonathan Moeller

Big Weed

Christian Hageseth

Tempting Danger

Eileen Wilks