To Explain the World: The Discovery of Modern Science

Read Online To Explain the World: The Discovery of Modern Science by Steven Weinberg - Free Book Online

Book: To Explain the World: The Discovery of Modern Science by Steven Weinberg Read Free Book Online
Authors: Steven Weinberg
Ads: Link
of Newton’s invention. On my first visit to the present quarters of the Royal Society in Carlton House Terrace, as a treat I was taken down to the basement to look at Newton’s little telescope, the second one he made.
    In 1671 Henry Oldenburg, the secretary and guiding spirit of the Royal Society, invited Newton to publish a description of his telescope. Newton submitted a letter describing it and his work on color to Philosophical Transactions of the Royal Society early in 1672. This began a controversy over the originality and significance of Newton’s work, especially with Hooke, who had been curator of experiments at the Royal Society since 1662, and holder of a lectureship endowed by Sir John Cutler since 1664. No feeble opponent, Hooke had made significant contributions to astronomy, microscopy, watchmaking, mechanics, and city planning. He claimed that he had performed the same experiments on light as Newton, and that they proved nothing—colors were simply added to white light by the prism.
    Newton lectured on his theory of light in London in 1675. He conjectured that light, like matter, is composed of many small particles—contrary to the view, proposed at about the same time by Hooke and Huygens, that light is a wave. This was one place where Newton’s scientific judgment failed him. There are many observations, some even in Newton’s time, that show the wave nature of light. It is true that in modern quantum mechanics light is described as an ensemble of massless particles, called photons, but in the light encountered in ordinary experience the number of photons is enormous, and in consequence light does behave as a wave.
    In his 1678 Treatise on Light , Huygens described light as a wave of disturbance in a medium, the ether, which consists of a vast number of tiny material particles in close proximity. Just as in an ocean wave in deep water it is not the water that moves along the surface of the ocean but the disturbance of the water, so likewise in Huygens’ theory it is the wave of disturbance in the particles of the ether that moves in a ray of light, not the particles themselves. Each disturbed particle acts as a new source of disturbance, which contributes to the total amplitude of the wave. Of course, since the work of James Clerk Maxwell in the nineteenth century we have known that (even apart from quantum effects) Huygens was only half right—light is a wave, but a wave of disturbances in electric and magnetic fields, not a wave of disturbance of material particles.
    Using this wave theory of light, Huygens was able to derive the result that light in a homogeneous medium (or empty space)behaves as if it travels in straight lines, as it is only along these lines that the waves produced by all the disturbed particles add up constructively. He gave a new derivation of the equal-angles rule for reflection, and of Snell’s law for refraction, without Fermat’s a priori assumption that light rays take the path of least time. (See Technical Note 30 .) In Huygens’ theory of refraction, a ray of light is bent in passing at an oblique angle through the boundary between two media with different light speeds in much the way the direction of march of a line of soldiers will change when the leading edge of the line enters a swampy terrain, in which their marching speed is reduced.
    To digress a bit, it was essential to Huygens’ wave theory that light travels at a finite speed, contrary to what had been thought by Descartes. Huygens argued that effects of this finite speed are hard to observe simply because light travels so fast. If for instance it took light an hour to travel the distance of the Moon from the Earth, then at the time of an eclipse of the Moon the Moon would be seen not directly opposite the Sun, but lagging behind by about 33°. From the fact that no lag is seen, Huygens concluded that the speed of light must be at least 100,000 times as fast as the speed of sound. This is correct; the

Similar Books

Having Faith

Abbie Zanders

78 Keys

Kristin Marra

Royal Inheritance

Kate Emerson

In Flight

R. K. Lilley

Core Punch

Pauline Baird Jones

Protocol 1337

D. Henbane

Wind Rider

Connie Mason