The Half-Life of Facts

Read Online The Half-Life of Facts by Samuel Arbesman - Free Book Online Page A

Book: The Half-Life of Facts by Samuel Arbesman Read Free Book Online
Authors: Samuel Arbesman
Ads: Link
amount of time playing with paper clips and magnets knows. And iron is much more magnetic than aluminum, which you can quickly ascertain by holding up foil to a magnet. These differences in magnetism can be measured, and the amount that a material is magnetic (or not) is known as its
magnetic permeability
.
    It turns out that the magnetic permeability of iron has changed over time. Specifically, iron has gotten twice as magnetic every five years. This sounds wrong. Shouldn’t the magnetic property of iron be unchanging? Iron is a chemical element, so any amount of this material should be the same, and pure as snow. Why should it instead increase over time?
    In truth, the iron that people have used throughout history has actually been far from pure. It has had numerous impurities of all sorts; what could be obtained years ago was far from a perfectly pristine elemental substance. In 1928, the engineer Trygve Dewey Yensen set out to determine the magnetic properties of iron over the previous several decades. By scouring records as far back as 1870, Yensen discovered that iron had steadily, and in a rather exponential fashion, increased its magnetic permeability. And this was entirely due to technology.
    As our technological methods for making pure iron have improved, so have the magnetic properties of iron. Something that seems to be safely in the category of scientific fact is actually intimately intertwined with our technological abilities. We have seen a steady and regular shift in these scientific facts as we improved these technologies. But just as technological advances change the scientific facts we already have, new technologies also allow for new discoveries, reflecting the tightly coupled nature of scientific and technological knowledge.
    Take the periodic table. The number of known chemical elements has steadily increased over time. However, while in the aggregate the number has grown relatively smoothly, if you zoom in to the data closely, a different picture emerges. As Derek de Solla Price found, the periodic table has grown by a series of logistic curves. He argued that each of these was due to a successive technological advance or approach. For example, from the beginnings of the scientific revolution in the late seventeenth century until the late nineteenth century, more than sixty elements were discovered, using various chemical techniques, including electrical shocks, to separate compounds into their constituent parts. In fact, many of thesetechniques were pioneered by a single man, Sir Humphry Davy, who himself discovered calcium, sodium, and boron, among many other elements.
    However, soon the limits of these approaches became evident, and the discoveries slowed. But, following a Moore’s Law–like trajectory, a new technology arose. The particle accelerator was created, and its atom-smashing ability enabled further discoveries. As particle accelerators of increasing energies have been developed, we have discovered heavier and larger chemical elements. In a very real way, these advances have allowed for new facts.
    Technological growth facilitates changes in facts, sometimes rapidly, in many areas: sequencing new genomes (nearly two hundred distinct species were sequenced as of late 2011); finding new asteroids (often done using sophisticated computer algorithms that can detect objects moving in space); even proving new mathematical theorems through increasing computer power.
    There are even new facts that combine technology with human performance. Athletes break records as their tools—for example, swimsuits, sneakers, and training facilities—become more sophisticated due to technological advances. Even the world of board games has been revolutionized. As noted earlier, over the past several decades, game after game has become a domain where computers dominate, changing the facts around us. Checkers was one of the first ones in which computers were able to beat humans consistently—the computer had

Similar Books

ARABELLA

Anonymous

Bound to You

Nichi Hodgson

Trouble With Harry

Katie MacAlister

Not Anything

Carmen Rodrigues

Broken Dolls

James Carol