faster-moving, more energetic electron is able to defy the electrical attraction of the nucleus and orbit farther away.
The picture that emerges is of an electron that is permitted to orbit at only certain special distances from the nucleus. This is quite unlike our solar system where a planet such as Earth could, in principle, orbit at any distance whatsoever from the Sun.
This property highlights another important difference between the microscopic world of atoms and the everyday world. In the everyday world, all things are continuous—a planet can orbit the Sun anywhere it likes, people can be any weight they like—whereas things in the microscopic world are discontinuous—an electron can exist in only certain orbits around a nucleus, light and matter can come in only certain indivisible chunks. Physicists call the chunks quanta—which is why the physics of the microscopic world is known as quantum theory.
The innermost orbit of an electron in an atom is determined by the Heisenberg uncertainty principle—by its hornetlike resistance to being confined in a small space. But the Heisenberg uncertainty principle does not simply prevent small things like atoms from shrinking without limit—ultimately explaining the solidity of matter. It also prevents far bigger things from shrinking without limit. The far bigger things in question are stars.
UNCERTAINTY AND STARS
A star is a giant ball of gas held together by the gravitational pull of its own matter. That pull is constantly trying to shrink the star and, if unopposed, would very quickly collapse it down to the merest speck—a black hole. For the Sun this would take less than half an hour. Since the Sun is very definitely not shrinking down to a speck, there must be another force counteracting gravity. There is. It comes from the hot matter inside. The Sun—along with every other normal star—is in a delicate state of balance, with the inward force of gravity exactly matched by the outward force of its hot interior.
This balance, however, is temporary. The outward force can be maintained only while there is fuel to burn and keep the star hot. Sooner or later, the fuel will run out. For the Sun this will occur in about another 5 billion years. When this happens, gravity will be king. Unopposed, it will crush the star, shrinking it ever smaller.
But all is not lost. In the dense, hot environment inside a star, frequent and violent collisions between high-speed atoms strip them of their electrons, creating a plasma, a gas of atomic nuclei mixed in with a gas of electrons. It is the tiny electrons that unexpectedly come to the rescue of the fast-shrinking star. As the electrons in the star’s matter are jammed ever closer together, they buzz about ever more violently because of the Heisenberg uncertainty principle. They batter anything trying to confine them, and this collective battering results in a tremendous outward force. Eventually, it is enough to slow and halt the shrinkage of the star.
A new balance is struck with the inward pull of gravity balanced not by the outward force of the star’s hot matter but by the naked force of its electrons. Physicists call it degeneracy pressure. But it’s just a fancy term for the resistance of electrons to being squeezed too close together. A star supported against gravity by electron pressure is known as a white dwarf. Little more than the size of Earth and occupying about a millionth of the star’s former volume, a white dwarf is an enormously dense object. A sugarcube of its matter weighs as much as a car!
One day the Sun will become a white dwarf. Such stars have no means of replenishing their lost heat. They are nothing more than stellar embers, cooling inexorably and gradually fading from view. But the electron pressure that prevents white dwarfs from shrinking under their own gravity has its limits. The more massive a star, the stronger its self-gravity. If the star is massive enough, its gravity will be
Emily Tilton
Sean D. Young
Harriet Lovelace
Linda Nichols
Ashwin Sanghi
J.T. Toman
Kira Stüssy
Lucia St. Clair Robson
Tom Lewis
Michael Grant, Katherine Applegate