engineers at Microsoft were in the audience, waiting to hear what I had to say about the future of computers and telecommunications. Staring out at the huge crowd, I could see the faces of the young, enthusiastic engineers who would be creating the programs that will run the computers sitting on our desks and laps. I was blunt about Moore’s law, and said that the industryhas to prepare for this collapse. A decade earlier, I might have been met with laughter or a few snickers. But this time I only saw people nodding their heads.
So the collapse of Moore’s law is a matter of international importance, with trillions of dollars at stake. But precisely how it will end, and what will replace it, depends on the laws of physics. The answers to these physics questions will eventually rock the economic structure of capitalism.
To understand this situation, it is important to realize that the remarkable success of the computer revolution rests on several principles of physics. First, computers have dazzling speed because electrical signals travel at near the speed of light, which is the ultimate speed in the universe. In one second, a light beam can travel around the world seven times or reach the moon. Electrons are also easily moved around and loosely bound to the atom (and can be scraped off just by combing your hair, walking across a carpet, or by doing your laundry—that’s why we have static cling). The combination of loosely bound electrons and their enormous speed allows us to send electrical signals at a blinding pace, which has created the electric revolution of the past century.
Second, there is virtually no limit to the amount of information you can place on a laser beam. Light waves, because they vibrate much faster than sound waves, can carry vastly more information than sound. (For example, think of stretching a long piece of rope and then vibrating one end rapidly. The faster you wiggle one end, the more signals you can send along the rope. Hence, the amount of information you can cram onto a wave increases the faster you vibrate it, that is, by increasing its frequency.) Light is a wave that vibrates at roughly 10 14 cycles per second (that is 1 with 14 zeros after it). It takes many cycles to convey one bit of information (a 1 or a 0). This means that a fiber-optic cable can carry roughly 10 11 bits of information on a single frequency. And this number can be increased by cramming many signals into a single optical fiber and then bundling these fibers into a cable. This means that, by increasing the number of channels in a cable and then increasing the number of cables, one can transmit information almost without limit.
Third, and most important, the computer revolution is driven by miniaturizing transistors. A transistor is a gate, or switch, that controls the flow of electricity. If an electric circuit is compared to plumbing, then a transistoris like a valve controlling the flow of water. In the same way that the simple twist of a valve can control a huge volume of water, the transistor allows a tiny flow of electricity to control a much larger flow, thereby amplifying its power.
At the heart of this revolution is the computer chip, which can contain hundreds of millions of transistors on a silicon wafer the size of your fingernail. Inside your laptop there is a chip whose transistors can be seen only under a microscope. These incredibly tiny transistors are created the same way that designs on T-shirts are made.
Designs on T-shirts are mass-produced by first creating a stencil with the outline of the pattern one wishes to create. Then the stencil is placed over the cloth, and spray paint is applied. Only where there are gaps in the stencil does the paint penetrate to the cloth. Once the stencil is removed, one has a perfect copy of the pattern on the T-shirt.
Likewise, a stencil is made containing the intricate outlines of millions of transistors. This is placed over a wafer containing many layers of
Roxie Noir
Catherine Bullard
Jennifer LaBrecque
Kate Cary
Angela McCallister
H.M. Ward
Jake Logan
Peter Brandvold
Stephen Sewell
Merry Bloch Jones