Ovid, Virgil, Euclid, Archimedes, and Cicero, the restorer of Archimedes’ grave. Steeped in the literature and science of the ancients, he returned home with a Latinized name, as Nicolaus Copernicus.
Like Aristotle, Copernicus collected books; unlike Aristotle, he did not have to be wealthy to do so. Thanks to the printing press, a scholar who was only moderately well off could afford to read widely, at home, without having to beg admission to distantinstitutions of learning where the books were kept chained to the reading desks. Copernicus was one of the first scholars to study printed books in his own library, and he studied none more closely than Ptolemy’s
Almagest
. Great was his admiration for Ptolemy, whom he admired as a thoroughly professional astronomer, mathematically sophisticated and dedicated to fitting his cosmological model to the observed phenomena. Indeed, Copernicus’s
De Revolutionibus (On the Revolutions)
, the book that would set the earth into motion around the sun and bring about Ptolemy’s downfall, otherwise reads like nothing so much as a sustained imitation of Ptolemy’s
Almagest
.
It is widely assumed that Copernicus proposed his heliocentric theory in order to repair the inaccuracies of the Ptolemaic model. Certainly it must have become evident to him, in his adulthood if not in his student days, that the Ptolemaic system did not work very well: “The mathematicians are so unsure of the movements of the sun and moon,” notes the preface to
De Revolutionibus
, “that they cannot even explain or observe the constant length of the seasonal year.” 1 Prior to the advent of the printing press, the failings of Ptolemy’s
Almagest
could be attributed to errors in transcription or translation, but once reasonably accurate printed editions of the book had been published, this excuse began to evaporate. Copernicus owned at least two editions of
Almagest
, and had read others in libraries, and the more clearly he came to understand Ptolemy’s model, the more readily he could see that its deficiencies were inherent, not incidental, to the theory. So considerations of accuracy may indeed have helped convince him that a new approach was required.
But by “new,” Copernicus the Renaissance man most often meant the rediscovery of something old.
Renaissance
, after all, means “re-birth,” and Renaissance art and science in general sprang more from classical tradition than from innovation. The young Michelangelo’s first accomplished piece of sculpture—executed in the classical style—was made marketable by rubbing dirt into it and palming it off, in Paris, as a Greek relic. Petrarch, called the founder of the Renaissance, dreamed not of the future but of the day when “our grandsons will be able to walk
back
into the pure radiance
of the past” 2
(emphasis added); when Petrarch was found dead, at the age of seventy, slumped at his desk after an all-night study session, his head was resting not on a contemporary volume but on a Latinedition of his favorite poet, Virgil, who had lived fourteen centuries earlier. Copernicus similarly worked in awe of the ancients, and his efforts, like so much of natural philosophy then and since, can be read as a continuation of the academic dialogues of Plato and Aristotle.
Aristotle, the first of the Greeks to have been rediscovered in the West, was so widely revered that he was routinely referred to as “the philosopher,” much as lovers of Shakespeare were to call him “the poet.” Much of his philosophy had been incorporated into the world view of the Roman Catholic Church. (Most notably by Thomas Aquinas—at least until the morning of December 6, 1273, when, while saying mass in Naples, Thomas became enlightened and declared that “I can do no more; such things have been revealed to me that all I have written seems as straw, and I now await the end of my life.”) From Aristotle, Copernicus acquired an enthusiasm for the universe of crystalline
Philip Kerr
C.M. Boers
Constance Barker
Mary Renault
Norah Wilson
Robin D. Owens
Lacey Roberts
Benjamin Lebert
Don Bruns
Kim Harrison