orbiter cockpit was designed would produce rather interesting and, in some cases, counterintuitive results, Mattingly said. He was part of a working group on controls and displays with fellow astronaut Gordon Fullerton, which made decisions about the center console.
If you sit in the orbiter, the pilot and commander are sitting side by side in the center console. It was one of the few places when, if you put on a pressure suit,. . . you could see and touch. I mean, you can see the instrument panel. Stuff up here gets really above your head, gets really hard to see. It’s in close, so it’s difficult for some of us older people to focus, and you can’t see a lot. You have to do it by feel, which isn’t a good thing to do with important things. So the mobility was small, and this was prime real estate. We all knew it. As we went on with the program, every time someone said, “Oh, we’ll just put this here [in the center console],” we’d say, “No.” We’d have a big office meeting. We’d all agree that, no, that’s not that important. We can put that here, we can do this. Well, after working on this thing for years, there’s practically nothing that’s important on the center console. We kept relegating everything to somewhere else, and it’s now the place where you set your coffee when you’re in the [simulator]. We protected that so hard, and poor old Gordo fought and fought for different things, and we’d think something was good, and then after we’d learn about what it really did and how it worked, we’d say, “No. You don’t need that.”
Then there was the question of how the Space Shuttle would fly. Each airplane flies slightly differently, or feels slightly different to a pilot flying it, and the only way to really understand exactly how a plane flies is to fly it. Further, a pilot’s understanding of how airplanes fly is, to some extent, limited by the variety of airplanes he or she has flown. Those differences are rooted in the physical differences in the airplane’s control systems, a factor that means something entirely different with the computer-aided fly-by-wire controls of the shuttle. “There is a military spec that publishes about flying qualities, handling qualities of airplanes,” Mattingly said.
It started back in World War II, I guess, maybe even before. It tells you all of the characteristics that have to go into making a good airplane, like how many pounds of force do you put on a rudder pedal to push it. Well, even dumb pilots finally figured out that with an electric airplane this maybe isn’t really relevant. Then the engineers wanted to just throw out all of the experience and say, “Hey, we’ll just make it cool and you’ll like it.” So we went on a crusade to rewrite this document, which turned out to be one of the most interesting projects I’ve ever been in, because it required rethinking a lot of the things that we all took for gospel. Every airplane that a pilot flies is the Bible on how airplanes fly. Fortunately, in the office we had people who had flown a lot of different kinds of airplanes. But nevertheless, that shapes your image. And now you get into something that’s totally different, and there’s a tendency to want to makethis new airplane fly like the one you like the most. The software guys contributed to this bad habit by saying, “Hey, it’s software. You tell us what you want, we’ll make it fly.” I remember one time they gave us a proposal that had a little dial and you could make it a P -51 or a T -33 or a F -86 or a 747. “Just tell me what you want.” We had a lot of naive ideas when we started.
While the computer for the Space Shuttle allowed many things that were groundbreaking at the time in the world of avionics, Mattingly pointed out that they were still quite primitive compared to modern standards.
I don’t remember the original size of the computer, but it had a memory that was miniscule by today’s standards, but it was
Philip Kerr
C.M. Boers
Constance Barker
Mary Renault
Norah Wilson
Robin D. Owens
Lacey Roberts
Benjamin Lebert
Don Bruns
Kim Harrison