width of the universe. This means that if one particle is observed to have an “up spin,” the other instantly goes from being a mere probability wave to an actual particle with the opposite spin. They are intimately linked, and in a way that acts as if there’s no space between them, and no time influencing their behavior.
Experiments from 1997 to 2007 have shown that this is indeed the case, as if tiny objects created together are endowed with a kind of ESP. If a particle is observed to make a random choice to go one way instead of another, its twin will always exhibit the same behavior (actually the complementary action) at the same moment—even if the pair are widely separated.
In 1997, Swiss researcher Nicholas Gisin truly started the ball rolling down this peculiar bowling lane by concocting a particularly startling demonstration. His team created entangled photons or bits of light and sent them flying seven miles apart along optical fibers. One encountered an interferometer where it could take one of two paths, always chosen randomly. Gisin found that whichever option a photon took, its twin would always make the other choice instantaneously.
The momentous adjective here is instantaneous . The second photon’s reaction was not even delayed by the time light could have
traversed those seven miles (about twenty-six milliseconds) but instead occurred less than three ten-billionths of a second later, the limit of the testing apparatus’s accuracy. The behavior is presumed to be simultaneous.
Although predicted by quantum mechanics, the results continue to astonish even the very physicists doing the experiments. It substantiates the startling theory that an entangled twin should instantly echo the action or state of the other, even if separated by any distance whatsoever, no matter how great.
This is so outrageous that some have sought an escape clause. A prominent candidate has been the “detector deficiency loophole,” the argument that experiments to date had not caught sufficient numbers of photon-twins. Too small a percentage had been observed by the equipment, critics suggested, somehow preferentially revealing just those twins that behaved in synch. But a newer experiment in 2002 effectively closed that loophole. In a paper published in Nature by a team of researchers from the National Institute of Standards and Technology led by Dr. David Wineland, entangled pairs of beryllium ions and a high-efficiency detector proved that, yes, each really does simultaneously echo the actions of its twin.
Few believe that some new, unknown force or interaction is being transmitted with zero travel time from one particle to its twin. Rather, Wineland told one of the authors, “There is some spooky action at a distance.” Of course, he knew that this is no explanation at all.
Most physicists argue that relativity’s insuperable lightspeed limit is not being violated because nobody can use EPR correlations to send information because the behavior of the sending particle is always random. Current research is directed toward practical rather than philosophical concerns: the aim is to harness this bizarre behavior to create new ultra-powerful quantum computers that, as Wineland put it, “carry all the weird baggage that comes with quantum mechanics.”
Through it all, the experiments of the past decade truly seem to prove that Einstein’s insistence on “locality”—meaning that nothing
can influence anything else at superluminal speeds—is wrong. Rather, the entities we observe are floating in a field—a field of mind, biocentrism maintains—that is not limited by the external space-time Einstein theorized a century ago.
No one should imagine that when biocentrism points to quantum theory as one major area of support, it is just a single aspect of quantum phenomena. Bell’s Theorem of 1964, shown experimentally to be true over and over in the intervening years, does more than merely demolish all vestiges of
Angela Richardson
Mitzi Vaughn
Julie Cantrell
Lynn Hagen
James Runcie
Jianne Carlo
Skye Malone, Megan Joel Peterson
Catharina Shields
Leo Charles Taylor
Amy M Reade