code consists of other special machines: organic molecules called enzymes, which split each base pair and then assemble two identical DNA molecules by rematching the broken base pairs. Other little chemical machines then verify the validity of the copy by checking the integrity of the base-pair matches. The error rate of these chemical information-processing transactions is about one error in a billion base-pair replications. There are further redundancy and error-correction codes built into the data itself, so meaningful mistakes are rare. Some mistakes do get through, most of which cause defects in a single cell. Mistakes in an early fetal cell may cause birth defects in the newborn organism. Once in a long while such defects offer an advantage, and this new encoding may eventually be favored through the enhanced survival of that organism and its offspring.
The DNA code controls the salient details of the construction of every cell in the organism, including the shapes and processes of the cell, and of the organs comprised of the cells. In a process called translation, other enzymes translate the coded DNA information by building proteins. It is these proteins that define the structure, behavior, and intelligence of each cell, and of the organism. 2
This computational machinery is at once remarkably complex and amazingly simple. Only four base pairs provide the data storage for the complexity of all the millions of life-forms on Earth, from primitive bacteria to human beings. The ribosomes—little tape-recorder molecules—read the code and build proteins from only twenty amino acids. The synchronized flexing of muscle cells, the intricate biochemical interactions in our blood, the structure and functioning of our brains, and all of the other diverse functions of the Earth’s creatures are programmed in this efficient code.
The genetic information-processing appliance is an existence proof of nanoengineering (building machines atom by atom), because the machinery of life indeed takes place on the atomic level. Tiny bits of molecules consisting of just dozens of atoms encode each bit and perform the transcription, error detection, and correction functions. The actual building of the organic stuff is conducted atom by atom with the building of the amino acid chains.
This is our understanding of the hardware of the computational engine driving life on Earth. We are just beginning, however, to unravel the software. While prolific, evolution has been a sloppy programmer. It has left us the object code (billions of bits of coded data), but there is no higher-level source code (statements in a language we can understand), no explanatory comments, no “help” file, no documentation, and no user manual. Through the Human Genome Project, we are in the process of writing down the 6-billion-bit code for the human genetic code, and are capturing the code for thousands of other species as well. 3 But reverse engineering the genome code—understanding how it works—is a slow and laborious process that we are just beginning. As we do this, however, we are learning the information-processing basis of disease, maturation, and aging, and are gaining the means to correct and refine evolution’s unfinished invention.
In addition to evolution’s lack of documentation, it is also a very inefficient programmer. Most of the code—97 percent according to current estimates—does not compute; that is, most of the sequences do not produce proteins and appear to be useless. That means that the active part of the code is only about 23 megabytes, which is less than the code for Microsoft Word. The code is also replete with redundancies. For example, an apparently meaningless sequence called Alu, comprising 300 nucleotide letters, occurs 300,000 times in the human genome, representing more than 3 percent of our genetic program.
The theory of evolution states that programming changes are introduced essentially at random. The changes are
Roxie Noir
Roger Hayden
DiAnn Mills
Lori Wick
Miriam Minger
Andrew Brown
Renee Petrillo
Tamara Gill
Christopher L. Anderson
Ellen Meister