newborn winged mouse.” Other than this sentence in support of his standing longevity hypothesis we find nothing.
In the final analysis, nothing that can be said about the incident escapes the realm of speculation. We are left with no option but to thinkthat Dr. Sakakibara’s comment –– “If one mouse did remain, what could ever have come of it?” –– says it all.
Immediately after the interview, pneumonia complicated by respiratory failure plunged Dr. Sakakibara into a coma from which he never awakened, and he died just three days later. I regretted having induced him to perform such a burdensome task on his sickbed, but it was too late.
Apparently, he used the word processor for as long as he could, and his last words as saved on the floppy disk were “the child’s” with no context.
Thanks to the interview and as per Dr. Sakakibara’s wish, I feel that some of the mysteries surrounding the winged mouse have been revealed herein, but others have remained unsolved. As the reader may already have wondered, prior to Dr. Akedera coming on stage, why had the mice not given birth even upon expiring in autumn? Perhaps, in the recent instances, having kept them apartin cages facilitated the communication of a death signal but not the direct contact presumed necessary for mating, but things remain murky for the preceding cases. These pages also lack an explanation that can take the place of Dr. Akedera’s hypothesis about a large litter. We are left to devise our own conjectures on these issues, but given that the fetus in Dr. Akedera’s experiment was in an inanimate state, it is possible that at some point, and by some cause, a slight slippage had been introduced into the timing of death and birth (such that death preceded birth). Alternatively, the animals’ very reproductive capacity had deteriorated.
If I may be allowed a detour, there is something about the final scene that caught my attention as a doctor and that I would like to explore. I believe that it is a hypothesis that is accompanied by a certain degree of physical evidence. The issue, also noted in Dr. Akedera’s journal, concerns the ECG data taken in the last moments. The waveforms recorded via the front and rear paws of the winged mouse do not feature the sharp peaks normallyseen in vertebrate species but rather a gentle sine curve. In humans we observe the distinct P, QRS, T segments, corresponding to atrial stimulation, ventricular stimulation, and recovery from stimulation, respectively, a basic waveform that obtains even for frogs. This calls to mind the finding that Dr. Ishikawa presented about a heart structure that lacks chambers. 3 The slides from his academic presentation show a roller pump-like structure that would create a steady standing wave in lieu of the pulsing waves caused by heartbeats/myocardial contraction. In a book of my own, I have argued that the electrical pulse for a rotating artificial heart would describe a sine curve. 11 This brings us to the pulse. While heartbeats per se do not exist for winged mice, if we consider one period of the sine curve as the equivalent, then the rate is as low as a single beat per minute. Since this value remained approximately constant from when bodily movements were still observed to just moments before death, it is unlikely to belong to terminal conditions brought on by enfeeblement. Given that the heartbeat for most small animals, including mice, is generally very high, ranging from one hundred to two hundredbeats per minute, this is indeed highly unique.
Animals with a heartbeat quite likely perceive each beat as a subjective unit of time. One beat for a human at rest is roughly equivalent to one second. In general, the smaller the animal, the shorter that time, and a mouse’s heart is said to beat an elephant’s lifetime’s worth in one year. While an elephant is an animal that moves extremely slowly from the mouse’s perspective, what this means in terms of awareness is
Michelle Betham
Peter Handke
Cynthia Eden
Patrick Horne
Steven R. Burke
Nicola May
Shana Galen
Andrew Lane
Peggy Dulle
Elin Hilderbrand