dominated by a (positive) cosmological constant discovered in 1917 by Willem de Sitter, was static. We will return to de Sitter’s universe in a moment, but in every other case, Einstein’s equations seemed to imply continual evolution, whereas Einstein himself felt that the universe should be unchanging and eternal. As more physicists worked with the equations, things only got worse for Einstein’s static, eternal universe.
The first exact cosmological solution of Einstein’s equations for a realistic universe filled with galaxies was discovered by Russian physicist Alexander Friedmann in 1922. He reached his result by assuming something that takes us all the way back to the beginning of this chapter: a Copernican universe in the sense that nowhere in space is special. This is known as the assumption of homogeneity and isotropy, and it corresponds to solving Einstein’s equations with a completely uniform matter distribution. This may seem to be a gross oversimplification, and in the early 1920s the extent to which this assumption agreed with the observational evidence – a universe seemingly containing just a single galaxy – was tenuous. From a theoretical perspective, however, Friedmann’s assumption makes perfect sense. It’s the simplest assumption one can make, and it makes it relatively easy to do the sums! So relatively easy, in fact, that Friedmann’s work was replicated and extended quite independently by a Belgian mathematician and priest named Georges Lemaître. Lemaître planted his flag firmly in the no-man’s-land between religion and science – a strip of intellectual land occupied, whether we like it or not, by cosmology. A student of Harlow Shapley, this deeply religious man never saw a conflict between these two very different modes of human thought. He embodies the much debated and criticised modern notion, introduced by the evolutionary biologist Stephen J. Gould, that science and religion are non-overlapping magesteria, asking the same questions but operating within separate domains. My view is that this is far too simplistic a position to take; questions concerning the origin of the physical universe are of the same character as questions about the nature of the gravitational force or the behaviour of subatomic particles, and answers will surely be found by employing the methodology of science. Having said that, I am willing to recognise that romance, or wonder, or whatever the term is for that deep feeling of awe when contemplating the universe in all its immensity, is a central component of both religious and scientific experience, and perhaps there is room for both in providing the inspiration for the exploration of nature.
At least this is what Lemaître felt, and he used his twin perspectives as a guide on his intellectual journey through the cosmos throughout his distinguished career. Ordained a priest in 1923 while studying at the Catholic University in Louvain, Lemaître studied physics and mathematics alongside some of the great physicists and astronomers of the time, including Arthur Eddington and Harlow Shapley, from the University of Cambridge to Harvard and MIT, before returning to Belgium in 1925 to work with Einstein’s General Relativity.
Lemaître never met Alexander Friedmann, who died from typhoid in 1925. They never spoke or corresponded, and Lemaître was almost certainly unaware of the obscure paper Friedmann had published describing a dynamic and changing universe. He followed the same intellectual path, however, assuming an isotropic and homogeneous distribution of matter in the cosmos, and searching for solutions to Einstein’s equations that describe the story of this smooth and uniform universe. And, of course, he came to the same conclusion: such a universe cannot be static – it must either expand or contract. Lemaître met Einstein at the 1927 Solvay Conference in Brussels, and told him of his conclusions. ‘Your calculations are correct, but your physics
Linda Barlow
Erica James
Nina Kiriki Hoffman
Emmie Dark
Charlaine Harris
Rae Meadows
Olumide Popoola
Joanna Wayne Rita Herron and Mallory Kane
Susan McBride
Natasha Boyd