moving directly away from each other—so it is not surprising that at some time in the past they were all at the same place. In the real universe, however, the galaxies are not just moving directly away from each other—they also have small sideways velocities. So in reality they need never have been all at exactly the same place, only very close together. Perhaps then the current expanding universe resulted not from a big bang singularity, but from an earlier contracting phase; as the universe had collapsed the particles in it might not have all collided, but had flown past and then away from each other, producing the present expansion of the universe. How then could we tell whether the real universe should have started out with a big bang? What Lifshitz and Khalatnikov did was to study models of the universe that were roughly like Friedmann’s models but took account of the irregularities and random velocities of galaxies in the real universe. They showed that such models could start with a big bang, even though the galaxies were no longer always moving directly away from each other, but they claimed that this was still only possible in certain exceptional models in which the galaxies were all moving in just the right way. They argued that since there seemed to be infinitely more Friedmann-like models without a big bang singularity than there were with one, we should conclude that there had not in reality been a big bang. They later realized, however, that there was a much more general class of Friedmann-like models that did have singularities, and in which the galaxies did not have to be moving any special way. They therefore withdrew their claim in 1970.
The work of Lifshitz and Khalatnikov was valuable because itshowed that the universe
could
have had a singularity, a big bang, if the general theory of relativity was correct. However, it did not resolve the crucial question: Does general relativity predict that our universe
should
have had a big bang, a beginning of time? The answer to this came out of a completely different approach introduced by a British mathematician and physicist, Roger Penrose, in 1965. Using the way light cones behave in general relativity, together with the fact that gravity is always attractive, he showed that a star collapsing under its own gravity is trapped in a region whose surface eventually shrinks to zero size. And, since the surface of the region shrinks to zero, so too must its volume. All the matter in the star will be compressed into a region of zero volume, so the density of matter and the curvature of space-time become infinite. In other words, one has a singularity contained within a region of space-time known as a black hole.
At first sight, Penrose’s result applied only to stars; it didn’t have anything to say about the question of whether the entire universe had a big bang singularity in its past. However, at the time that Penrose produced his theorem, I was a research student desperately looking for a problem with which to complete my Ph.D. thesis. Two years before, I had been diagnosed as suffering from ALS, commonly known as Lou Gehrig’s disease, or motor neuron disease, and given to understand that I had only one or two more years to live. In these circumstances there had not seemed much point in working on my Ph.D.—I did not expect to survive that long. Yet two years had gone by and I was not that much worse. In fact, things were going rather well for me and I had gotten engaged to a very nice girl, Jane Wilde. But in order to get married, I needed a job, and in order to get a job, I needed a Ph.D.
In 1965 I read about Penrose’s theorem that any body undergoing gravitational collapse must eventually form a singularity. I soon realized that if one reversed the direction of time in Penrose’s theorem, so that the collapse became an expansion, the conditions of his theorem would still hold, provided the universe were roughly like a Friedmann model on large
Bruce Alexander
Barbara Monajem
Chris Grabenstein
Brooksley Borne
Erika Wilde
S. K. Ervin
Adele Clee
Stuart M. Kaminsky
Gerald A Browne
Writing